ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2023)
May 7–11, 2023
Idaho Falls, ID|Snake River Event Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
May 2023
Nuclear Technology
April 2023
Fusion Science and Technology
Latest News
The blossoming of cooperation between the U.S. and Canada
The United States and Canadian nuclear industries used to be an example of how two independent teams of engineers facing an identical problem—making electricity from uranium—could come up with completely different answers. In the 1950s, Canada began designing a reactor with tubes, heavy water, and natural uranium, while in the U.S. it was big pots of light water and enriched uranium.
But 80 years later, there is a remarkable convergence. The North American push for a new generation of nuclear reactors, mostly small modular reactors (SMRs), is becoming binational, with U.S. and Canadian companies seeking markets and regulatory certification on both sides of the border and in many cases sourcing key components in the other country.
David Bernard, Olivier Fabbris, Romain Gardet
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 302-312
Technical Paper | doi.org/10.13182/NSE13-104
Articles are hosted by Taylor and Francis Online.
Three similar experiments performed in the 8-MW(thermal) MELUSINE experimental power pool reactor aimed at analyzing 1 GWd/tonne HM spent fuel pellets doped with several actinides and fission products. The goal was to measure the energy-integrated neutron-induced capture cross section in three different neutron spectra (from pressurized water reactor–like to undermoderated ones). This paper summarizes the combined deterministic APOLLO2 and stochastic TRIPOLI4 analysis using the JEFF-3.1.1 European nuclear data library. Very good agreement is observed for most neutron-induced capture cross sections of actinides except for a clear underestimation of 241Am(n,γ). An accurate value of its associated isomeric branching ratio is also suggested. A resonant fluctuation (factor of 2.7 between the two available excited levels regarding the l = 0 total orbital momenta) is suggested for this isomeric branching capture ratio. Finally, a precise value (more accurate than the reported JEFF-3.1.1 one) of the decay branching ratio of 242gAm(β+/ε) is deduced: 0.171 ± 0.001.