ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
D. Ostermann, C. Krumb, R. Krieg
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 211-231
Technical Paper | doi.org/10.13182/NSE14-3
Articles are hosted by Taylor and Francis Online.
During postulated severe accidents in nuclear power plants, steel sheets and shells may suffer high plastic strains up to several percent. In contrast, for design-basis accidents the strains are within lower limits of the order of 0.2% required by the given rules. In both cases the margins up to structural fracture are of vital interest. In sheets and shells these margins may be reduced by diffuse as well as localized necking. Therefore, this paper investigates the remaining structural deformability described by the uniform elongation strain, where diffuse necking starts, and the quasi-uniform elongation strain, where localized necking starts. The theoretical models developed recently for thin sheets under uniaxial loading are extended to account for biaxial loading. Major findings are confirmed by appropriate structural experiments. Based on these results and their scatter, strain limits are recommended for steel sheets and shells under accident loading, such that fracture can be excluded. The strains caused by the accidents discussed in this paper turn out to be below these limits.