ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
D. Ostermann, C. Krumb, R. Krieg
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 211-231
Technical Paper | doi.org/10.13182/NSE14-3
Articles are hosted by Taylor and Francis Online.
During postulated severe accidents in nuclear power plants, steel sheets and shells may suffer high plastic strains up to several percent. In contrast, for design-basis accidents the strains are within lower limits of the order of 0.2% required by the given rules. In both cases the margins up to structural fracture are of vital interest. In sheets and shells these margins may be reduced by diffuse as well as localized necking. Therefore, this paper investigates the remaining structural deformability described by the uniform elongation strain, where diffuse necking starts, and the quasi-uniform elongation strain, where localized necking starts. The theoretical models developed recently for thin sheets under uniaxial loading are extended to account for biaxial loading. Major findings are confirmed by appropriate structural experiments. Based on these results and their scatter, strain limits are recommended for steel sheets and shells under accident loading, such that fracture can be excluded. The strains caused by the accidents discussed in this paper turn out to be below these limits.