ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Delay, cost increase announced for U.K. nuclear project
Perspex screens and reduced seating capacity in the Hinkley Point canteens help protect the workforce during breaks, EDF Energy said. Photo: EDF Energy
The unfortunate effects of the COVID-19 pandemic on nuclear new-build projects haven’t stopped with Vogtle: EDF Energy this morning reported that the expected startup date for Unit 1 at its Hinkley Point C site is being pushed from late 2025 to June 2026.
In addition, the project’s completion costs are now estimated to be in the range of £22 billion to £23 billion (about $30.2 billion to $31.5 billion), some £500 million (about $686 million) more than the 2019 estimate, EDF said, adding the caveat that these revisions assume an ability to begin a return to normal site conditions by the second quarter of 2021.
Liu Xiaobo, Fan Xiaoqiang, Peng Xianjue, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 119-129
Technical Paper | dx.doi.org/10.13182/NSE13-30
Articles are hosted by Taylor and Francis Online.
A novel experimental method is introduced for effectively validating neutron initiation probability, through which the delayed neutron influence on the source strength can be neglected—this is the main reason for substantially explaining the burst waiting time experiments performed in the Godiva and Caliban burst reactors. The key idea of the new method is that the burst is initiated by simultaneously injecting a pulse of neutrons with appropriate strength just as the reactor achieves prompt supercritical and tallied by judging whether or not the burst is initiated by the pulsed neutrons based on the measured data. The principle of the method is described using initiation theory. The Chinese Fast Burst Reactor–II (CFBR-II) structure and two sets of configurations for preliminary experiments are then described. Last, those two sets of preliminary experiments are carried out on CFBR-II in the state of 0.042 $ prompt supercritical, and results, including the typical picture and other important measured data, are provided in order to illustrate how the initiation probability can be validated. The initiation probability of 0.43 was determined by preliminary performing of 65 bursts, which is an ∼35% relative difference between the theoretic calculations and the experimental results. Some discussion and suggestions for possible follow-on work are provided.