ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Liu Xiaobo, Fan Xiaoqiang, Peng Xianjue, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE13-30
Articles are hosted by Taylor and Francis Online.
A novel experimental method is introduced for effectively validating neutron initiation probability, through which the delayed neutron influence on the source strength can be neglected—this is the main reason for substantially explaining the burst waiting time experiments performed in the Godiva and Caliban burst reactors. The key idea of the new method is that the burst is initiated by simultaneously injecting a pulse of neutrons with appropriate strength just as the reactor achieves prompt supercritical and tallied by judging whether or not the burst is initiated by the pulsed neutrons based on the measured data. The principle of the method is described using initiation theory. The Chinese Fast Burst Reactor–II (CFBR-II) structure and two sets of configurations for preliminary experiments are then described. Last, those two sets of preliminary experiments are carried out on CFBR-II in the state of 0.042 $ prompt supercritical, and results, including the typical picture and other important measured data, are provided in order to illustrate how the initiation probability can be validated. The initiation probability of 0.43 was determined by preliminary performing of 65 bursts, which is an ∼35% relative difference between the theoretic calculations and the experimental results. Some discussion and suggestions for possible follow-on work are provided.