ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Liu Xiaobo, Fan Xiaoqiang, Peng Xianjue, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 119-129
Technical Paper | doi.org/10.13182/NSE13-30
Articles are hosted by Taylor and Francis Online.
A novel experimental method is introduced for effectively validating neutron initiation probability, through which the delayed neutron influence on the source strength can be neglected—this is the main reason for substantially explaining the burst waiting time experiments performed in the Godiva and Caliban burst reactors. The key idea of the new method is that the burst is initiated by simultaneously injecting a pulse of neutrons with appropriate strength just as the reactor achieves prompt supercritical and tallied by judging whether or not the burst is initiated by the pulsed neutrons based on the measured data. The principle of the method is described using initiation theory. The Chinese Fast Burst Reactor–II (CFBR-II) structure and two sets of configurations for preliminary experiments are then described. Last, those two sets of preliminary experiments are carried out on CFBR-II in the state of 0.042 $ prompt supercritical, and results, including the typical picture and other important measured data, are provided in order to illustrate how the initiation probability can be validated. The initiation probability of 0.43 was determined by preliminary performing of 65 bursts, which is an ∼35% relative difference between the theoretic calculations and the experimental results. Some discussion and suggestions for possible follow-on work are provided.