ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2021)
February 9–11, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Delay, cost increase announced for U.K. nuclear project
Perspex screens and reduced seating capacity in the Hinkley Point canteens help protect the workforce during breaks, EDF Energy said. Photo: EDF Energy
The unfortunate effects of the COVID-19 pandemic on nuclear new-build projects haven’t stopped with Vogtle: EDF Energy this morning reported that the expected startup date for Unit 1 at its Hinkley Point C site is being pushed from late 2025 to June 2026.
In addition, the project’s completion costs are now estimated to be in the range of £22 billion to £23 billion (about $30.2 billion to $31.5 billion), some £500 million (about $686 million) more than the 2019 estimate, EDF said, adding the caveat that these revisions assume an ability to begin a return to normal site conditions by the second quarter of 2021.
Claude Mounier, Pietro Mosca
Nuclear Science and Engineering | Volume 179 | Number 2 | February 2015 | Pages 130-147
Technical Paper | dx.doi.org/10.13182/NSE13-63
Articles are hosted by Taylor and Francis Online.
The fast neutron fluence is an important parameter for the reactor pressure vessel (RPV) lifetime. The uncertainty estimation of this parameter is crucial to manage the RPV with a suitable safety margin. This work focuses on a facet of the problem that concerns the uncertainty contribution of the spectrum of the fission source for different burnups in a thermal neutron reactor. The main goal of this paper is to assess the effect of a possible uncertainty correlation among the spectra of the fissile nuclei, involved in the fission source, on the response uncertainty. Two main simplifications are assumed to reduce the complexity of the problem. The first simplification concerns the geometry of the transport problem that is chosen to calculate as fast as possible the sensitivities and the different responses. The second simplification is related to the way by which one can take into account the correlations among spectra of different fissile nuclei. Simple ENDF-6 models of the fission spectrum (Maxwell, Watt, and simplified Madland-Nix) are used to define correlations among the fissile spectra through the mean neutron energy of the prompt fission spectrum. Results are given to quantify the effect of these postulated correlations on response uncertainties and are compared to the ones using JENDL-4.0 covariances.