ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Akihiro Kitamura, Hiroshi Kurikami, Masaaki Yamaguchi, Yoshihiro Oda, Tatsuo Saito, Tomoko Kato, Tadafumi Niizato, Kazuki Iijima, Haruo Sato, Mikazu Yui, Masahiko Machida, Susumu Yamada, Mitsuhiro Itakura, Masahiko Okumura, Yasuo Onishi
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 104-118
Technical Paper | doi.org/10.13182/NSE13-89
Articles are hosted by Taylor and Francis Online.
Significant amounts of radioactive materials were released to the atmosphere from the Fukushima Daiichi nuclear power plant after the accident caused by the major earthquake and devastating tsunami on March 11, 2011. Accurate and efficient prediction of the distribution and fate of radioactive materials eventually deposited at the surface in the Fukushima area is of primary importance. In order to make such a prediction, it is important to gather information regarding the main migration pathways for radioactive materials in the environment and the time dependences of radioactive material transport over the long term. The radionuclide of most concern in the Fukushima case is radioactive cesium. Previous surveys indicate that the primary transportation mechanisms of cesium are either soil erosion and water transport of sediment-sorbed contaminants or transport of dissolved cesium in the water drainage system such as by rivers. A number of mathematical models of radioactive contaminants, with particular attention paid to radiocesium, on the land and in rivers, reservoirs, and estuaries in the Fukushima area are developed. Simulation results are examined while simultaneously implementing field investigations. For example, the orders of magnitude of the radiocesium concentration on the flood plain of the Ukedo River by model prediction and field investigation results were both 105 Bq/kg. Microscopic studies of the adsorption/desorption mechanism of cesium and soils have been performed to shed light on the mechanisms of macroscopic diffusive transport of radiocesium through soil. The maximum exchange energy between cesium and prelocated potassium in the frayed edge site was simulated to be 27 kJ/mol, which reproduces the corresponding value previously achieved by experiments. These predictions will be utilized for assessment of dose from the environmental contamination and proposed countermeasures to limit dispersion of the contaminants.