ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
C. van der Hoeven, E. Schneider, L. Leal
Nuclear Science and Engineering | Volume 179 | Number 1 | January 2015 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE13-78
Articles are hosted by Taylor and Francis Online.
There is a need for improved molybdenum isotope covariance data for use in modeling a new uranium-molybdenum fuel form to be produced at the Y-12 National Security Complex (Y-12). Covariance data correlate the uncertainty in an isotopic cross section at a particular energy to uncertainties at other energies. While high-fidelity covariance data exist for key isotopes, the low-fidelity covariance data available for most isotopes, including the natural molybdenum isotopes considered in this work, are derived from integral measurements without meaningful correlation between energy regions. This paper provides a framework for using the Bayesian R-matrix code SAMMY to derive improved isotopic resonance region covariance data from elemental experimental cross-section data. These resonance-wise covariance data were combined with integral uncertainty data from the Atlas of Neutron Resonances, uncertainty data generated via a dispersion method, and high-energy uncertainty data previously generated with the Empire-KALMAN code to produce an improved set of covariance data for the natural molybdenum isotopes. The improved covariance data sets, along with the associated resonance parameters, were inserted into JENDL4.0 data files for the molybdenum isotopes for use in data processing and modeling codes. Additionally, a series of critical experiments featuring the new U(19.5%)-10Mo fuel form produced at Y-12 was designed. Along with existing molybdenum sensitive critical experiments, these were used to compare the performance of the new molybdenum covariance data against the existing low-fidelity evaluation. The new covariance data were found to result in reduced overall bias, reduced bias due to the molybdenum isotopes, and improved goodness of fit of computational to experimental results.