ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Margaret A. Marshall
Nuclear Science and Engineering | Volume 178 | Number 4 | December 2014 | Pages 479-495
Technical Paper | doi.org/10.13182/NSE14-43
Articles are hosted by Taylor and Francis Online.
A series of small, compact critical assembly experiments was completed from 1962 to 1965 at Oak Ridge National Laboratory's Critical Experiments Facility in support of the Medium-Power Reactor Experiments program. Initial experiments, performed in November and December 1962, consisted of a core of unmoderated stainless steel tubes surrounded by a graphite reflector. Later experiments included beryllium-reflected assemblies with the fuel in a 1.506-cm triangular lattice and in seven-tube clusters. Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, and cadmium ratios were performed. The critical configurations, the cadmium ratio, and activation rate measurements for the beryllium-reflected 1.506-cm-array critical configuration have been evaluated and are described in this paper. It was found that these measurements are acceptable as benchmark experiments and have been included in the International Handbook of Evaluated Reactor Physics Benchmark Experiments and the International Handbook of Evaluated Criticality Safety Benchmark Experiments.