ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
John D. Bess, Nozomu Fujimoto
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 414-427
Technical Paper | doi.org/10.13182/NSE14-14
Articles are hosted by Taylor and Francis Online.
Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the high-temperature engineering test reactor (HTTR). Additional measurements of the subcritical configuration of the fully loaded core, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely detailed models of the HTTR as much of the design information is still proprietary. The uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. However, use of the benchmark critical configurations of the HTTR for nuclear data adjustment is not recommended as the impact of these biases has not been addressed with rigorous detail. The impact of any simplification biases, if any, is not expected to significantly impact evaluation of the other reactor physics measurement calculations. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that compose the HTTR. Monte Carlo calculations of keff are between ∼0.9% and ∼2.7% greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulations of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.