ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Kenji Yokoyama, Makoto Ishikawa
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 350-362
Technical Paper | doi.org/10.13182/NSE14-11
Articles are hosted by Taylor and Francis Online.
To provide a reactor physics benchmark for burnup reactivity coefficients, experimental data, showing the relationship between excess reactivity and accumulated thermal power acquired during the experimental fast reactor JOYO MK-I duty power operation in the late 1970s, have been evaluated and analyzed. To improve the prediction accuracy of nuclear characteristics through the use of integral experimental data, nominal values and uncertainties, including correlations of the experimental data, were evaluated. All possible uncertainty factors were evaluated and quantified by utilizing knowledge obtained after the MK-I duty power operation and calculation results based on the latest reactor physics analysis methods. Meanwhile, the present evaluated data have been reviewed and approved by the International Reactor Physics Experiment Evaluation Project, with the expectation that these data will be widely used. In the present paper, the evaluation of nominal values and uncertainties is described with a focus on the measurement technique uncertainty, which is a dominant uncertainty factor of the burnup reactivity coefficient. In addition, new analysis results of the benchmark problem are shown by the use of the latest Japanese evaluated nuclear data JENDL-4.0.