ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
Peters
Latta
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
Christine Latten, Dan G. Cacuci
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 156-171
Technical Paper | doi.org/10.13182/NSE13-110
Articles are hosted by Taylor and Francis Online.
This work illustrates reactor physics applications of the predictive modeling of coupled multiphysics systems (PMCMPS), formulated by Cacuci (2014), by means of the benchmarks Godiva (a bare uranium sphere) and Jezebel-239 and Jezebel-240 (bare plutonium spheres). The PMCMPS methodology was ab initio developed in the response space, to reduce as much as possible the computational memory requirements for predictive modeling of very large systems involving not only many model parameters but also many model responses. The model parameters considered in this work include individual cross sections for each material, nuclide, reaction type, and energy group, giving the following totals: 2241 parameters for Jezebel-239, 1458 parameters for Jezebel-240, and 2916 parameters for Godiva. Eight responses were considered for Jezebel-239 (the effective multiplication factor; the center core fission rates for 233U, 238U, 237Np, and 239Pu; and the center core radiative capture rates for 55Mn, 93Nb, and 63Cu). Three responses (the effective multiplication factor and the center core fission rates for 233U and 237Np) were selected for Jezebel-240, and eleven responses were selected for Godiva (the reaction rate types listed for Jezebel-239, along with the radiative capture rates for 107Ag, 127I, and 81Br). The PMCMPS methodology ensures that increasing the amount of information yields more accurate predictions, with smaller predicted uncertainties, as long as the considered information is consistent. This fact is amply illustrated in this work, which shows that the interdependence of responses that were measured in more than one benchmark is stronger than for responses that were measured in a single benchmark. More generally, the consideration of the complete information, including couplings, provided jointly by all three benchmarks (as opposed to consideration of the benchmarks as separate systems) leads to more accurate predictions of nominal values for responses and model parameters, yielding larger reductions in the predicted uncertainties that accompany the predicted mean values of responses and model parameters.