ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jonathan Gérardin, Pierre Ruyer, Pascal Boulet
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 103-118
Technical Paper | doi.org/10.13182/NSE13-61
Articles are hosted by Taylor and Francis Online.
The reflooding of the reactor core during a loss-of-coolant accident (LOCA) in a pressurized water reactor is a rather complex conjugate heat transfer situation. In the mist flow regime downward from the quench front, the rod wall can reach temperatures up to 1400 K, and radiative heat transfer can play a significant role. The present study concerns the accurate numerical computation of radiative heat transfer throughout a subchannel with LOCA representative flow conditions resolved at a computational fluid dynamics–scale spatial discretization thus allowing the large gradients of two-phase-flow properties to be determined. The accuracy of several methods to solve the radiative transfer equations has been compared both in canonical test cases and in low-pressure LOCA conditions. The role of radiative transfer is obvious in all variables including those related to the dynamics of the flow. Analysis of the gap between the present estimation and a standard correlation has been performed. It leads to the conclusion that radiative transfer can be taken into account accurately by correlation as soon as well-defined radiative properties are considered. The transfer is very sensitive to droplet size and concentration and can be as large as the convective heat transfer.