ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Shuichi Ishikura, Yang Xu, Kenichiro Satoh
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 76-85
Technical Paper | doi.org/10.13182/NSE13-50
Articles are hosted by Taylor and Francis Online.
The primary hot-leg piping system of the advanced sodium-cooled fast reactor under conceptual study in Japan (named Japan sodium-cooled fast reactor: JSFR) utilizes large-diameter and thin-walled pipes to ensure high coolant velocity, which inevitably leads to the occurrence of flow-induced vibration. Usually, the structural integrity of a piping system under flow-induced vibration is defined to be the maximum stress amplitude below the design fatigue limit. The present study tries to establish a reasonable methodology to estimate the high-cycle fatigue damage due to flow-induced vibration depending on its frequencies and the corresponding stress levels. An analytical procedure for probabilistic fatigue evaluation is developed and applied to the hot-leg piping system. The reasonability of the newly proposed methodology is confirmed from a test simulation.