ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
R. Crasta, S. Ganesh, H. Naik, A. Goswami, S. V. Suryanarayana, S. C. Sharma, P. V. Bhagwat, B. S. Shivashankar, V. K. Mulik, P. M. Prajapati
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 66-75
Technical Paper | doi.org/10.13182/NSE11-90
Articles are hosted by Taylor and Francis Online.
The (n,γ) and (n,2n) capture cross sections of 238U have been measured at neutron energies of 8.04 ± 0.30 and 11.90 ± 0.35 MeV from the 7Li(p,n) reaction using an activation and off-line gamma-ray spectrometric technique. The experimentally determined 238U(n,γ) and 238U(n,2n) reaction cross sections were compared with the evaluated data of ENDF/B-VII.0, JENDL-4.0, JEFF-3.1/A, and CENDL-3.1. The experimental values were found to be in agreement with the evaluated value based on ENDF/B-VII.0, JENDL-4.0, and JEFF-3.1/A but not with CENDL-3.1. The present measurement has been compared with literature data in a wide range of neutron energies. The 238U(n,γ)239U and 238U(n,2n)237U reaction cross sections were also calculated theoretically using the TALYS 1.4 computer code and compared with the experimental data.