ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Song Hyun Kim, Do Hyun Kim, Jong Kyung Kim, Jea Man Noh
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 29-41
Technical Paper | doi.org/10.13182/NSE13-38
Articles are hosted by Taylor and Francis Online.
In order to avoid calculation bias and increase calculation efficiency, convergence of the fission source distribution (FSD) in Monte Carlo simulations is important. Numerous analysis methods have been developed and used for checking the fission source convergence. However, such schemes have low applicability to Monte Carlo codes or give low diagnostic accuracy. To address these limitations, a method to verify the fission source convergence using the average and standard deviation of fission source positions is proposed. To collect the fission site information, the MCNP5 code was modified, and position information was extracted. The accuracy and advantages of the proposed method were verified by solving Organisation for Economic Co-operation and Development/Nuclear Energy Agency benchmark problems with the modified MCNP5 code and comparing the results to those obtained with the Shannon entropy and the nine center distance sum approaches. The analysis shows that the proposed method has good applicability and exhibits high accuracy for verifying the convergence of the FSD. It is expected that the proposed scheme will be a valuable contribution to the field of the fission source convergence.