ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2023)
May 7–11, 2023
Idaho Falls, ID|Snake River Event Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
May 2023
Nuclear Technology
April 2023
Fusion Science and Technology
Latest News
The blossoming of cooperation between the U.S. and Canada
The United States and Canadian nuclear industries used to be an example of how two independent teams of engineers facing an identical problem—making electricity from uranium—could come up with completely different answers. In the 1950s, Canada began designing a reactor with tubes, heavy water, and natural uranium, while in the U.S. it was big pots of light water and enriched uranium.
But 80 years later, there is a remarkable convergence. The North American push for a new generation of nuclear reactors, mostly small modular reactors (SMRs), is becoming binational, with U.S. and Canadian companies seeking markets and regulatory certification on both sides of the border and in many cases sourcing key components in the other country.
Edward W. Larsen, Blake W. Kelley
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 1-15
Technical Paper | doi.org/10.13182/NSE13-47
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) and the coarse-mesh diffusion synthetic acceleration (CMDSA) methods are widely used, independently developed methods for accelerating the iterative convergence of deterministic neutron transport calculations. In this paper, we show that these methods have the following theoretical relationship: If the standard notion of diffusion synthetic acceleration as a fine-mesh method is straightforwardly generalized to a coarse-mesh method, then the linearized form of the CMFD method is algebraically equivalent to a CMDSA method. We also show theoretically (via Fourier analysis) and experimentally (via simulations) that for fixed-source problems, the CMDSA and CMFD methods have nearly identical convergence rates. Our numerical results confirm the close theoretically predicted relationship between these methods.