ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. R. Gilbert, L. W. Packer, J.-Ch. Sublet, R. A. Forrest
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 291-306
Technical Paper | doi.org/10.13182/NSE13-76
Articles are hosted by Taylor and Francis Online.
The simulation of neutron irradiation–induced transmutation using inventory codes is an important part of the research into materials in various nuclear environments, including fusion, fission, medical physics, nuclear security, and astrophysics. These simulations, even in their simplest form, such as the neutron irradiation of a single pure element, generate large time-dependent data sets of complex results. For each nuclide in the inventory, as a function of time, the output data will include the number of atoms and its contribution to a variety of radiological quantities including total or specific activity, gamma dose, heat output, and ingestion and inhalation hazards. A key challenge when performing inventory calculations is thus to represent the full complexity of the results in a visual and understandable format. This paper discusses two different approaches to visualizing inventory data: (a) nuclide maps, which allow the concentrations or activity contributions from all nuclides in the inventory to be displayed and also for the variation to be traced in time under a specific irradiation scenario, and (b) importance diagrams, which are a neutron spectrum–independent representation of the dominant nuclides that contribute to the activity of an irradiated material. Finally, these techniques are applied in parallel to investigate how the activation response of molybdenum can be improved via isotopic tailoring (enrichment or depletion), which could make it a more viable alternative armor material in the design of fusion reactors.