ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
David Blanchet, Bruno Fontaine
Nuclear Science and Engineering | Volume 177 | Number 3 | July 2014 | Pages 260-274
Technical Paper | doi.org/10.13182/NSE13-59
Articles are hosted by Taylor and Francis Online.
The current design studies on sodium-cooled fast reactors (SFRs) are breaking with the past since they are guided by a new set of design criteria arising from the objectives of Generation IV reactors. The new safety requirements lead to designing reactors with breakeven breeding cores because in terms of reactivity control, they minimize the need to limit the consequences of an inadvertent control rod withdrawal event. Furthermore, as the reactivity control needs are low, a breakeven core enables the use of absorbing materials with reduced efficiency (natural boron, hafnium, etc.), which may be less costly than enriched boron. However, control rods designed with low absorbing materials may present the disadvantage of a nonnegligible loss of efficiency due to their consumption under irradiation. This paper presents a methodology to accurately calculate and to analyze the impact of this consumption on reactivity control.