ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
H. D. Choi, R. B. Firestone, M. S. Basunia, A. Hurst, B. Sleaford, N. Summers, J. E. Escher, Zs. Révay, L. Szentmiklósi, T. Belgya, M. Krtička
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 219-232
Technical Paper | doi.org/10.13182/NSE13-49
Articles are hosted by Taylor and Francis Online.
Thermal neutron radiative capture cross sections σ0γ of 155,157Gd are determined by summing the transition cross sections feeding the ground states of the respective product nuclei. The transition cross sections feeding the ground states from the discrete states in the low-excitation region, where the decay schemes are known completely, were measured using a guided cold neutron beam at the Budapest Research Reactor. Transitions from the states at the higher excitation, the so-called quasi-continuum levels, are determined from simulations with the extreme statistical model normalized to the intensity balance through the low-lying discrete levels. A significant non-1/v correction was applied to 155,157Gd, leading to σ0γ(155Gd) = 56 700(2100) b and σ0γ(157Gd) = 239 000(6000) b.