ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 184-192
Technical Paper | doi.org/10.13182/NSE13-29
Articles are hosted by Taylor and Francis Online.
It is very time-consuming to obtain a high-precision Monte Carlo (MC) estimate of the fuel temperature reactivity coefficient (FTC) through direct subtraction of two reactivity values from MC calculations at two different fuel temperatures. As an alternative to the direct subtraction MC estimate of the FTC, this paper presents a new method based on the adjoint-weighted correlated sampling technique. The new method translates the change in fuel temperature as the corresponding changes in both the microscopic cross sections and the transfer probabilities in scattering kernels described by the free gas model. The effectiveness of the new method is examined through continuous-energy MC neutronics calculations for pressurized water reactor pin cell and CANDU pressurized heavy water reactor lattice problems. The isotope-wise and reaction-type–wise contributions to the FTCs in the two problems are examined for two free gas models: the constant-cross-section and the resonance-cross-section models. It is demonstrated that the new MC method can predict the reactivity change due to fuel temperature variation as accurately as the conventional, more time-consuming direct subtraction MC method.