ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 184-192
Technical Paper | doi.org/10.13182/NSE13-29
Articles are hosted by Taylor and Francis Online.
It is very time-consuming to obtain a high-precision Monte Carlo (MC) estimate of the fuel temperature reactivity coefficient (FTC) through direct subtraction of two reactivity values from MC calculations at two different fuel temperatures. As an alternative to the direct subtraction MC estimate of the FTC, this paper presents a new method based on the adjoint-weighted correlated sampling technique. The new method translates the change in fuel temperature as the corresponding changes in both the microscopic cross sections and the transfer probabilities in scattering kernels described by the free gas model. The effectiveness of the new method is examined through continuous-energy MC neutronics calculations for pressurized water reactor pin cell and CANDU pressurized heavy water reactor lattice problems. The isotope-wise and reaction-type–wise contributions to the FTCs in the two problems are examined for two free gas models: the constant-cross-section and the resonance-cross-section models. It is demonstrated that the new MC method can predict the reactivity change due to fuel temperature variation as accurately as the conventional, more time-consuming direct subtraction MC method.