ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Nicolas Authier, Benoît Richard, Philippe Humbert
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 169-183
Technical Paper | doi.org/10.13182/NSE12-111
Articles are hosted by Taylor and Francis Online.
We provide experimental data on the initiation of persistent fission chains obtained at different supercritical states, using the fast burst reactor Caliban. In many previous papers, theory has been compared mostly with initiation experiments at various superprompt critical states, whereas very few experimental data have been published on delayed supercritical states. To fill the lack of data, we have conducted three studies on the reactor at reactivities far below 0.7 $, which is one of the lowest states ever published for a similar assembly. We give a justification of the use of the gamma function to fit experimental results for the temporal distributions of waiting times and compare experiments with numerical simulations obtained with a punctual zero-dimensional Monte Carlo code and a punctual deterministic initiation code.