ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
A. Rashkovan, D. McClure, D. R. Novog
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 141-155
Technical Paper | doi.org/10.13182/NSE13-4
Articles are hosted by Taylor and Francis Online.
Grid spacers within nuclear fuel assemblies play a critical role in fuel performance and contribute to safety margins by enhancing the margin to the critical heat flux. The Organisation for Economic Co-operation and Development/Nuclear Energy Agency has organized a computational benchmark wherein the prediction of flows and turbulence downstream of a mixing-type grid spacer are examined. Studies performed by McMaster University using STAR-CCM+ for the final submission to this MATiS-H blind benchmark exercise related to inter-subchannel mixing and turbulence are presented in this paper. The rationale behind the choice of the computational scheme along with comparisons of the submitted results to the experiments is reported. The goal at the outset of the study was to obtain a reasonably accurate solution with a minimum number of nodes and appropriate turbulence models such that the results would be relevant for engineering applications that include property variations and heat transfer. As such, advanced modeling methods such as large eddy simulation and unsteady Reynolds-averaged Navier-Stokes (URANS) were not included within the scope of the models tested. However, URANS was used to study some specific separate-effect flow features within the grid spacer, and these tests were compared to their steady counterparts.
A comprehensive separate-effect study was performed first in order to finalize the computational scheme for the submission. Several partial geometries were studied for steady and unsteady behavior as well as for mesh sensitivity, turbulence, and wall modeling effects. A series of successively more complex simulations, sometimes involving unsteady modeling, was performed up to and including a study of similar 5 × 5 rod bundle geometry reported in the literature. The final submission results are presented in the paper and are compared with the benchmark data that have recently been released.