ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
A. Rashkovan, D. McClure, D. R. Novog
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 141-155
Technical Paper | doi.org/10.13182/NSE13-4
Articles are hosted by Taylor and Francis Online.
Grid spacers within nuclear fuel assemblies play a critical role in fuel performance and contribute to safety margins by enhancing the margin to the critical heat flux. The Organisation for Economic Co-operation and Development/Nuclear Energy Agency has organized a computational benchmark wherein the prediction of flows and turbulence downstream of a mixing-type grid spacer are examined. Studies performed by McMaster University using STAR-CCM+ for the final submission to this MATiS-H blind benchmark exercise related to inter-subchannel mixing and turbulence are presented in this paper. The rationale behind the choice of the computational scheme along with comparisons of the submitted results to the experiments is reported. The goal at the outset of the study was to obtain a reasonably accurate solution with a minimum number of nodes and appropriate turbulence models such that the results would be relevant for engineering applications that include property variations and heat transfer. As such, advanced modeling methods such as large eddy simulation and unsteady Reynolds-averaged Navier-Stokes (URANS) were not included within the scope of the models tested. However, URANS was used to study some specific separate-effect flow features within the grid spacer, and these tests were compared to their steady counterparts.
A comprehensive separate-effect study was performed first in order to finalize the computational scheme for the submission. Several partial geometries were studied for steady and unsteady behavior as well as for mesh sensitivity, turbulence, and wall modeling effects. A series of successively more complex simulations, sometimes involving unsteady modeling, was performed up to and including a study of similar 5 × 5 rod bundle geometry reported in the literature. The final submission results are presented in the paper and are compared with the benchmark data that have recently been released.