ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Odmaa Sambuu, Toru Obara
Nuclear Science and Engineering | Volume 177 | Number 1 | May 2014 | Pages 97-110
Technical Note | doi.org/10.13182/NSE13-22
Articles are hosted by Taylor and Francis Online.
In the past decade, greater emphasis has been placed in nuclear reactor design on passive systems for the removal of decay heat. This study focuses on the passive safety feature of decay heat removal in modular high-temperature gas-cooled reactors (HTGRs). The availability of this feature depends largely on reactor dimensions, power, and initial core temperature. It is assumed that the initial temperatures of fuel, graphite matrix, and coolant are the same, and so are represented by the initial core temperature, which is uniformly distributed throughout the core. However, little is known in general about the relationships among the parameters mentioned above or on the ability of the core to passively reject decay heat. To obtain a general understanding of the relationship of those parameters in HTGRs, analyses were performed, estimating the effects of initial core and soil temperatures and of the presence of structural materials on the maximum core temperature, allowable power, and size. Appropriate sizes were evaluated for reactors with given powers having various maximum power densities and operating at different initial core temperatures. Criticality and burnup analyses for the proposed reactors were performed, and it was found that all reactors with 20 wt% of uranium enrichment can be critical for over 16 years of operation.