ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 177 | Number 1 | May 2014 | Pages 77-89
Technical Paper | doi.org/10.13182/NSE13-37
Articles are hosted by Taylor and Francis Online.
The target motion sampling (TMS) temperature treatment technique, previously known as “explicit treatment of target motion,” is a stochastic method for taking the effect of thermal motion on reaction rates into account on-the-fly during Monte Carlo neutron tracking. The method is based on sampling target velocities at each collision site and dealing with the collisions in the target-at-rest frame using cross sections below the actual temperature of the nuclide or, originally, 0 K. Previous results have shown that transport with the original implementation of the TMS method requires about two to four times more CPU time than conventional transport methods, depending on the case. In the present paper, it is observed that the overhead factor may increase even above 10 in cases involving burned fuel. To make the method more practical for everyday use, some optimization is required. This paper discusses a TMS optimization technique in which the temperatures of the basis cross sections are elevated above 0 K. Comparisons show that the TMS method is able to reproduce the NJOY-based reference results within statistical accuracy, both with and without the newly implemented optimization technique. In the specific test cases, the optimization saved 35% to 83% of the calculation time, depending on the case.