ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Mihály Makai, Zoltán Szatmáry
Nuclear Science and Engineering | Volume 177 | Number 1 | May 2014 | Pages 52-67
Technical Paper | doi.org/10.13182/NSE12-97
Articles are hosted by Taylor and Francis Online.
In the Monte Carlo (MC) method, statistical noise is usually present, and it may become dominant in the calculation of a distribution, usually by iteration, but it is less important in calculating integrals. The subject of the present work is the role of statistical noise in iterations involving stochastic simulation (the MC method). Convergence is checked by comparing two consecutive solutions in the iteration. The statistical noise may randomize or pervert the convergence. We study the probability of convergence and the correct estimation of the variance in a simplified model problem. We also study the statistical properties of the solution to a deterministic problem with a stochastic source obtained from a stochastic calculation. There are iteration strategies resulting in nonconvergence or a randomly stopped iteration.