ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Apil Tamang, Dmitriy Y. Anistratov
Nuclear Science and Engineering | Volume 177 | Number 1 | May 2014 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE13-42
Articles are hosted by Taylor and Francis Online.
We present a computational method for adequate and efficient coupling of the multigroup neutron transport equation with the precursor and heat transfer equations. It is based on the multilevel nonlinear quasi-diffusion (QD) method for solving the multigroup transport equation. The system of equations includes the time-dependent high-order transport equation and time-dependent multigroup and effective one-group low-order QD equations. We also apply the α-approximation for the time-dependent high-order transport equation. This approach enables one to avoid storing the angular flux from the previous time step. Numerical results for model transient problems are presented.