ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
C. Dubi, I. Israelashvili, T. Ridnik
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 350-359
Technical Paper | doi.org/10.13182/NSE13-2
Articles are hosted by Taylor and Francis Online.
Neutron multiplicity counting (NMC) measurements are often affected by the detection system dead time. Still, dead time losses are often neglected in analytic NMC models, and most of the dead time corrections are done through empirical models, experimentally fitted to the measurement system. In the present paper, we introduce a new analytic model for calculating the effect of a system dead time on the outcome of NMC. The model is subjected to two assumptions (in addition to the standard model assumptions in multiplicity counting): The first is that the dead time can be described by a paralyzable model, and the second is that the dead time effect may occur only between neutrons arriving from the same source event. The second assumption is, in fact, a restriction on the source event rate in the system and, in certain cases, may eventually be translated into a restriction on the mass of the measured sample.