ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Ik Kyu Park, Jong Hwan Kim, Seong Wan Hong
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 255-272
Technical Paper | doi.org/10.13182/NSE13-16
Articles are hosted by Taylor and Francis Online.
Heat losses, heat remnants, and solidified layer thickness were calculated using a single-sphere film-boiling model. Debris particles of the quenched TROI (Test for Real cOrium Interaction with water) experiments were the target of analyses. The single-sphere film-boiling model can provide the order of triggerability and exponential potential at fuel-coolant interactions of various melt materials. For the triggerability, a system with a small particle size and large thermal conductivity induces a larger heat loss and a more voided mixture, which means a less triggered system. The explosion potentials are dependent not upon the triggerability but upon the heat contents of the mixture melt particles that can participate in a steam explosion. The calculated solidified layer thickness ratio to the radius of the melt particle, defined as a fragility factor of a melt particle in this paper, also maintained consistency with the order of triggerability and was evaluated by the heat loss. The breakup sizes for various melt materials were analyzed with several types of breakup models. A dynamic breakup model to deal with transient velocities can explain the different breakup sizes of various melt materials.