ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tong Kyu Park, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 226-239
Technical Paper | doi.org/10.13182/NSE12-41
Articles are hosted by Taylor and Francis Online.
The multiobjective simulated annealing (MOSA)–based fuel assembly loading pattern (LP) optimization method, employing the discontinuous penalty function (DPF), is extended for multicycle applications by introducing an adaptively constrained discontinuous penalty function (ACDPF). A discontinuous point in the penalty function is adaptively shifted to a better direction during the course of MOSA such that the search can be more efficient. The advantages of the ACDPF-based MOSA algorithm over the original DPF-based algorithm are first examined with a real single-cycle LP optimization problem of an operating reactor, as well as with a simple LP optimization problem that has known solutions. A direct multicycle LP optimization method is then formulated with an application to the first four cycles of the Younggwang Nuclear Unit 4 (YGN4) core. The rearrangement method is devised as a fuel shuffling method that can avoid drastic changes in the LPs of the subsequent cycles of a seed cycle. It is demonstrated that the ACDPF-based MOSA combined with the rearrangement method produces quite effectively the optimum LP sets for the four cycles, which outperform the LPs generated by a series of cyclewise optimizations as well as the actual LPs of YGN4 that were already used in the plant.