ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Hursin, B. Collins, Y. Xu, T. Downar
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 186-200
Technical Paper | doi.org/10.13182/NSE12-4
Articles are hosted by Taylor and Francis Online.
During the last several years, a class of algorithms has been developed based on two-dimensional–one-dimensional (2D-1D) decomposition of the reactor transport problem. The current 2D-1D algorithm implemented in the DeCART (Deterministic Core Analysis based on Ray Tracing) code solves a set of coupled 2D planar transport and 1D axial diffusion equations. This method has been successfully applied to several light water reactor analysis problems. However, applications with strong axial heterogeneities have exposed the limitations of the current diffusion solvers used for the axial solution. The work reported in this paper is the implementation of a discrete ordinates (Sn)-based axial solver in DeCART. An Sn solver is chosen to preserve the consistency of the angular discretization between the radial method of characteristics and axial solvers. This paper presents the derivation of the nodal expansion method (NEM)-Sn equations and its implementation in DeCART. The subplane spatial refinement method is introduced to reduce the computational cost and improve the accuracy of the calculations. The NEM-Sn axial solver is tested using the C5G7 benchmark. The DeCART results with the axial diffusion solver shows keff errors of approximately −95, −74, and −110 pcm for the unrodded configuration, rodded configuration A, and rodded configuration B, respectively. These errors decrease to approximately −40, −11, and −12 pcm by using the NEM-Sn solver. In terms of pin power distribution, the use of the NEM-Sn solver has a small effect, except for the heavily rodded configuration. The implementation of the subplane scheme makes it possible to maintain a coarse axial mesh and therefore to reduce the computational cost of the three-dimensional calculations without reducing the accuracy of the solution.