ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
M. Hursin, B. Collins, Y. Xu, T. Downar
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 186-200
Technical Paper | doi.org/10.13182/NSE12-4
Articles are hosted by Taylor and Francis Online.
During the last several years, a class of algorithms has been developed based on two-dimensional–one-dimensional (2D-1D) decomposition of the reactor transport problem. The current 2D-1D algorithm implemented in the DeCART (Deterministic Core Analysis based on Ray Tracing) code solves a set of coupled 2D planar transport and 1D axial diffusion equations. This method has been successfully applied to several light water reactor analysis problems. However, applications with strong axial heterogeneities have exposed the limitations of the current diffusion solvers used for the axial solution. The work reported in this paper is the implementation of a discrete ordinates (Sn)-based axial solver in DeCART. An Sn solver is chosen to preserve the consistency of the angular discretization between the radial method of characteristics and axial solvers. This paper presents the derivation of the nodal expansion method (NEM)-Sn equations and its implementation in DeCART. The subplane spatial refinement method is introduced to reduce the computational cost and improve the accuracy of the calculations. The NEM-Sn axial solver is tested using the C5G7 benchmark. The DeCART results with the axial diffusion solver shows keff errors of approximately −95, −74, and −110 pcm for the unrodded configuration, rodded configuration A, and rodded configuration B, respectively. These errors decrease to approximately −40, −11, and −12 pcm by using the NEM-Sn solver. In terms of pin power distribution, the use of the NEM-Sn solver has a small effect, except for the heavily rodded configuration. The implementation of the subplane scheme makes it possible to maintain a coarse axial mesh and therefore to reduce the computational cost of the three-dimensional calculations without reducing the accuracy of the solution.