ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Bryce K. Y. Matsuo, Mark Anderson, Devesh Ranjan
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 138-153
Technical Paper | doi.org/10.13182/NSE12-85
Articles are hosted by Taylor and Francis Online.
Geometrical effects on the local heat transfer coefficient (HTC) and pressure drop for supercritical carbon dioxide in printed-circuit heat exchangers are numerically quantified. Combinations of different operating pressures (7.5 to 10.2 MPa), mass fluxes [326 to 762 kg/(m2⋅s)], and the enhanced wall treatment k-ε and shear stress transport k-ω turbulence models are investigated using a finite-volume framework. Three different channel geometries are used: a nonchamfered zig-zag (ideal case), a chamfered zig-zag (prototype case), and an airfoil (ideal case). The simulations are compared with experimental results and empirical correlations. A new correlation is developed based on the numerical data obtained and published experimental data for the zig-zag channels. The results show that the local HTC increases with an increase in operating pressure or an increase in mass flux for each channel. The HTC of the zig-zag channel is found to be approximately 2.5 times that of the airfoil; however, the pressure drop is 4.0 to 8.3 times higher. Based on these results, the area goodness ratios of the nonchamfered and chamfered zig-zag channels are respectively 2.65 and 1.57 times larger than that of the airfoil.