ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W. B. Amian, R. C. Byrd, D. A. Clark, C. A. Goulding, M. M. Meier, G. L. Morgan, C. E. Moss
Nuclear Science and Engineering | Volume 115 | Number 1 | September 1993 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE93-A35517
Articles are hosted by Taylor and Francis Online.
Differential (p,xn) cross sections were measured at emission angles of 30, 60, 120, and 150 deg for the 597-MeV proton bombardment of thin targets of elemental beryllium, boron, carbon, nitrogen, oxygen, aluminum, iron, lead, and depleted uranium. Time-of-flight techniques were used to determine the neutron energy spectrum and to identify and discriminate against backgrounds. Comparisons of the experimental data with intranuclear-cascade evaporation model calculations using the HETC code show good agreement for lead and uranium, but there are discrepancies for the light elements, predominantly at forward angles. Comparison with a,previous experiment shows good agreement only for heavy nuclei in the evaporation region at neutron energies below 20 MeV.