ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Edmund T. Rumble, III, William E. Kastenberg
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 172-187
Technical Paper | doi.org/10.13182/NSE72-A35505
Articles are hosted by Taylor and Francis Online.
Several nonlinear space-time reactor models are studied by employing modal analysis. Eigenfunction modes resulting from the solution of Sturm-Liouville equations satisfying the appropriate linear portion of the neutron diffusion equation are chosen. These modes form a complete, orthogonal set and are convenient to calculate numerically. Examples where coefficients and time constants are representative of present reactor design are studied. The work is focused on space-dependent feedback and local step and ramp reactivity insertions. The large difference in the neutronic and thermal-hydraulic time constants gives rise to computational difficulties. This difficulty, characteristic of “stiff systems” was minimized by use of a rational extrapolation technique to solve the resultant equations.