ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Paul A. Robinson, Jr., George D. Sauter
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 117-129
Technical Paper | doi.org/10.13182/NSE72-A35500
Articles are hosted by Taylor and Francis Online.
Inverse Compton scattering, wherein a photon gains energy as a result of a reaction with a moving electron, has been studied as a potential energy loss mechanism in the operation of a controlled thermonuclear reactor (CTR). Assuming local thermodynamic equilibrium within a 500-cm-diam plasma at 20 keV we have calculated, for various plasma densities, the influence of inverse Compton scattering on steady-state photon energy leakage via two potential cooling effects: the increased escape probability of the photons generated within the plasma itself, and the negative net energy deposition within the plasma of an incident external photon flux, such as might be generated by the CTR radiation shield through (n,γ) reactions and photon scattering. For currently anticipated CTR plasma densities (1015 ions/cm3), the increase in steady-state photon leakage due to inverse Compton scattering is negligible. For plasma densities of 1019 ions/cm3 or more, the increase is significant (≥10%).