ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Paul A. Robinson, Jr., George D. Sauter
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 117-129
Technical Paper | doi.org/10.13182/NSE72-A35500
Articles are hosted by Taylor and Francis Online.
Inverse Compton scattering, wherein a photon gains energy as a result of a reaction with a moving electron, has been studied as a potential energy loss mechanism in the operation of a controlled thermonuclear reactor (CTR). Assuming local thermodynamic equilibrium within a 500-cm-diam plasma at 20 keV we have calculated, for various plasma densities, the influence of inverse Compton scattering on steady-state photon energy leakage via two potential cooling effects: the increased escape probability of the photons generated within the plasma itself, and the negative net energy deposition within the plasma of an incident external photon flux, such as might be generated by the CTR radiation shield through (n,γ) reactions and photon scattering. For currently anticipated CTR plasma densities (1015 ions/cm3), the increase in steady-state photon leakage due to inverse Compton scattering is negligible. For plasma densities of 1019 ions/cm3 or more, the increase is significant (≥10%).