ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Paul A. Robinson, Jr., George D. Sauter
Nuclear Science and Engineering | Volume 49 | Number 2 | October 1972 | Pages 117-129
Technical Paper | doi.org/10.13182/NSE72-A35500
Articles are hosted by Taylor and Francis Online.
Inverse Compton scattering, wherein a photon gains energy as a result of a reaction with a moving electron, has been studied as a potential energy loss mechanism in the operation of a controlled thermonuclear reactor (CTR). Assuming local thermodynamic equilibrium within a 500-cm-diam plasma at 20 keV we have calculated, for various plasma densities, the influence of inverse Compton scattering on steady-state photon energy leakage via two potential cooling effects: the increased escape probability of the photons generated within the plasma itself, and the negative net energy deposition within the plasma of an incident external photon flux, such as might be generated by the CTR radiation shield through (n,γ) reactions and photon scattering. For currently anticipated CTR plasma densities (1015 ions/cm3), the increase in steady-state photon leakage due to inverse Compton scattering is negligible. For plasma densities of 1019 ions/cm3 or more, the increase is significant (≥10%).