ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
E. S. Bettis, R. W. Schroeder, G. A. Cristy, H. W. Savage, R. G. Affel, L. F. Hemphill
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 804-825
Technical Paper | doi.org/10.13182/NSE57-A35495
Articles are hosted by Taylor and Francis Online.
The Aircraft Reactor Experiment was designed for operation at temperatures in the region of 1500°F at a power of 1 to 3 Mw with a fluoride-salt fuel circulating in a heterogeneous core. The moderator was hot-pressed BeO blocks cooled by circulating sodium. The heat produced was dissipated in water through hot liquid-to-helium-to-water heat exchange systems. All sodium and fuel circuit components were made of Inconel fabricated by inertgas (Heliarc) welding. The sj^stem was heated to design temperature by means of electrical heating units applied over all parts of the system. Instrumentation and control of the experiment were fairly conventional. For the most part, standard instruments were modified slightly for the high-temperature application. The reactor system was constructed and operated in a building specifically provided for the purpose.