ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Comments on U.S. nuclear export controls on China
As trade negotiations are in the works between the United States and China, Washington, D.C., has the advantage in semiconductors but nuclear power is a different story, according to a June 9 article in the Hong Kong–based South China Morning Post.
R. C. Briant, Alvin M. Weinberg
Nuclear Science and Engineering | Volume 2 | Number 6 | November 1957 | Pages 797-803
Technical Paper | doi.org/10.13182/NSE57-A35494
Articles are hosted by Taylor and Francis Online.
Molten fluorides of uranium, thorium, plutonium, and other elements potentially have wide applicability as fuels for power reactors. Because of their low vapor pressure they can be used in very high-temperature but low-pressure liquid-fuel reactors. In addition, they possess great chemical flexibility—the molten-salt principle can be applied to burners, thorium-uranium thermal breeders, plutonium-uranium converters, and possibly even to fast plutonium breeders. Because of the very high thermal efficiency obtainable in reactors using molten salt fuel, the fuel cost in a simple burner using enriched U235 is of the order of 2–3 mills/kwhr. A high-temperature reactor using molten uranium salts (Aircraft Reactor Experiment) was operated for a short time at the Oak Ridge National Laboratory. The reactor was of the circulating-fuel type, with a BeO moderator. The maximum outlet temperature achieved was greater than 1500°F. It is believed that with further development the ARE could be a prototype for an economical uranium burner.