ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
P. M. Prajapati, H. Naik, S. Mukherjee, S. V. Suryanarayana, B. S. Shivashankar, R. Crasta, V. K. Mulik, K. C. Jagadeesan, S. V. Thakre, S. Ganesan, A. Goswami
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 106-113
Technical Paper | doi.org/10.13182/NSE12-78
Articles are hosted by Taylor and Francis Online.
The yields of various fission products in the neutron-induced fission of 232Th have been determined a using recoil catcher and off-line gamma-ray spectrometric technique with flux-averaged energies of 5.42, 7.75, and 10.09 MeV. The neutrons were generated using the 7Li(p,n) reaction at the BARC-TIFR [Bhabha Atomic Research Centre–Tata Institute of Fundamental Research] Pelletron facility, Mumbai, India. The fission product–yield data in the 10.09-MeV neutron-induced fission of 232Th are determined for the first time. The yields of the different fission products in the neutron-induced fission of 232Th with flux-averaged energies of 5.42 and 7.75 MeV from the present work have been compared with similar data of comparable neutron energy from the literature and are found to be in good agreement. The effect of nuclear structure on fission product yields as a function of neutron energy has been examined.