ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Karen A. Miller, Martyn T. Swinhoe, Stephen Croft, Takayuki Tamura, Shun Aiuchi, Akio Kawai, Tomonori Iwamoto
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 98-105
Technical Paper | doi.org/10.13182/NSE12-43
Articles are hosted by Taylor and Francis Online.
As new uranium enrichment plants are proposed and come online worldwide, interest in using neutron methods for uranium hexafluoride (UF6) cylinder assay has been growing; however, large discrepancies exist in published F(α,n) yields from uranium isotopes. Uncertainties in these data are propagated through the analysis of every UF6 measurement and have implications for safeguards conclusions drawn from them. In this paper, a value for the specific F(α,n) yield in UF6 from 234U is calculated from measurements of 30B cylinders containing bulk UF6 at the Rokkasho Enrichment Plant in Japan. The measurements were taken using the Uranium Cylinder Assay System. The yield was derived by combining the cylinder measurements with detailed Monte Carlo modeling, known isotopic composition, and inversion analysis. We calculated the 234U neutron emission rate in UF6 to be (474 ± 21) n/s·g−1 with a 68% confidence level. The results obtained in this study will help enable an important class of nondestructive assay instruments to be applied with greater confidence and accuracy.