ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Karen A. Miller, Martyn T. Swinhoe, Stephen Croft, Takayuki Tamura, Shun Aiuchi, Akio Kawai, Tomonori Iwamoto
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 98-105
Technical Paper | doi.org/10.13182/NSE12-43
Articles are hosted by Taylor and Francis Online.
As new uranium enrichment plants are proposed and come online worldwide, interest in using neutron methods for uranium hexafluoride (UF6) cylinder assay has been growing; however, large discrepancies exist in published F(α,n) yields from uranium isotopes. Uncertainties in these data are propagated through the analysis of every UF6 measurement and have implications for safeguards conclusions drawn from them. In this paper, a value for the specific F(α,n) yield in UF6 from 234U is calculated from measurements of 30B cylinders containing bulk UF6 at the Rokkasho Enrichment Plant in Japan. The measurements were taken using the Uranium Cylinder Assay System. The yield was derived by combining the cylinder measurements with detailed Monte Carlo modeling, known isotopic composition, and inversion analysis. We calculated the 234U neutron emission rate in UF6 to be (474 ± 21) n/s·g−1 with a 68% confidence level. The results obtained in this study will help enable an important class of nondestructive assay instruments to be applied with greater confidence and accuracy.