ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 69-80
Technical Paper | doi.org/10.13182/NSE13-1
Articles are hosted by Taylor and Francis Online.
In this work, a high-order perturbation method is developed to generate/compute response functions for the coarse mesh transport (COMET) method, which provides whole-core neutron transport solutions to various reactor core types. In this approach, the response functions are first generated at a reference eigenvalue point, and the response functions at an arbitrary eigenvalue are computed as a high-order perturbation from the reference point. The method has been tested at both the lattice level (response function generation) and the core level (whole-core transport calculations). At the lattice level, it is found that the response functions predicted by the perturbation method agree very well with those directly computed by the Monte Carlo method. The average relative difference in the surface-to-surface response functions is 0.29% to 0.46% when the eigenvalue k ranges from 0.6667 to 1.5. In whole-core transport calculations, the COMET calculations using the high-order perturbation method are almost identical to those using the interpolation method. The eigenvalue, assembly, and pin fission densities predicted by COMET agree very well with the MCNP reference solution. This indicates that the high-order perturbation response function generation method can achieve the same accuracy as the interpolation method while significantly improving the computational efficiency of the precomputation phase.