ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
John C. Wagner, Douglas E. Peplow, Scott W. Mosher
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 37-57
Technical Paper | doi.org/10.13182/NSE12-33
Articles are hosted by Taylor and Francis Online.
This paper presents a hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for more than a decade to very effectively improve the efficiency of Monte Carlo calculations of localized quantities (e.g., flux, dose, or reaction rate at a specific location). The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented and demonstrated within the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence of SCALE and the ADVANTG (Automated Deterministic Variance Reduction Generator)/MCNP framework. Application of the method to representative real-world problems, including calculation of dose rate and energy-dependent flux throughout the problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and discussed. Results of the FW-CADIS method and other recently developed global variance-reduction approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases considered.