ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
How can radiation protection professionals support the global demand for nuclear energy?
Mauritius Hiller
The nuclear industry is being pushed forward by a global tailwind that includes plans for more conventional nuclear plants and an exciting trend toward developing small modular reactors. These include advanced safety features and novel reactor designs, often powered by new types of fuel.
This new technology must meet existing stringent safety and security demands and must be safe for the environment, workers, and general population. Wide acceptance of international standards, as well as standardization of designs and plant concepts, will help in the long run.
Radiation protection (RP) professionals play a key role from the very start of the design phase. There is rapid and continuous development in the field of RP. Improved computational tools enable better modeling and understanding of radiation shielding, detection, and effects. Nuclear safeguards and nuclear criticality safety are increasingly important.
John C. Wagner, Douglas E. Peplow, Scott W. Mosher
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 37-57
Technical Paper | doi.org/10.13182/NSE12-33
Articles are hosted by Taylor and Francis Online.
This paper presents a hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for more than a decade to very effectively improve the efficiency of Monte Carlo calculations of localized quantities (e.g., flux, dose, or reaction rate at a specific location). The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented and demonstrated within the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) sequence of SCALE and the ADVANTG (Automated Deterministic Variance Reduction Generator)/MCNP framework. Application of the method to representative real-world problems, including calculation of dose rate and energy-dependent flux throughout the problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and discussed. Results of the FW-CADIS method and other recently developed global variance-reduction approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases considered.