ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Gov. Pritzker issues EO to boost nuclear energy in Illinois
Illinois Gov. J. B. Pritzker issued a new executive order (EO) on February 18 directing both the Illinois Power Agency and the Illinois Commerce Commission to issue a notice of intent (NOI) to potential developers of new nuclear power plants.
The signing of that EO took place on the same day Pritzker delivered his 2026 State of the State address, in which he set a goal of building at least 2 gigawatts of new nuclear capacity in the state.
C. J. Solomon, A. Sood, T. E. Booth, J. K. Shultis
Nuclear Science and Engineering | Volume 176 | Number 1 | January 2014 | Pages 1-36
Technical Paper | doi.org/10.13182/NSE12-81
Articles are hosted by Taylor and Francis Online.
A method for deterministically minimizing the cost of a single Monte Carlo tally employing weight-dependent weight-window variance reduction has been developed. This method relies on deterministic calculations of the tally's variance and average computational time per history, the product of which is the cost (inverse figure of merit) of the tally calculation. The tally's variance is deterministically computed by solving the history-score moment equations that describe the moments of the tally's score distribution, and the average time per history is computed by solving the future time equation that describes the expected amount of computational time a particle and its progeny require to process to termination. Both equations are solved by the Sn method. Results are presented for one- and two-dimensional problems that demonstrate increased calculation efficiency, by factors of 1.1 to 2, of the optimized problems over standard adjoint (importance) biasing.