ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. Ganapol
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 270-282
Technical Paper | doi.org/10.13182/NSE92-A29074
Articles are hosted by Taylor and Francis Online.
The radiative transfer equation for photons interacting with the phytoelements (primarily leaves) of a plant canopy of finite height is solved by application of Siewert’s FN numerical algorithm. A one-dimensional, one-angle transport model is assumed with the Lambertian scattering leaves all oriented in the same direction. In addition, a Lambertian reflecting soil is assumed at the lower canopy boundary. Since the focus of this work is on the development of the FN algorithm, emphasis is given to the derivation of the algorithm and the algorithmic accuracy; however, a comparison with afield experiment is also presented to indicate the potential usefulness of the FN solution.