ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. M. R. Williams
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 215-230
Technical Paper | doi.org/10.13182/NSE92-A29070
Articles are hosted by Taylor and Francis Online.
The physical and mathematical problems associated with radioactive waste disposal have been outlined and discussed. Some of the more important relationships and equations have been derived and explained with a view to showing how techniques developed in conventional reactor physics problems can be applied with great effect to radionuclide transport. We stress in particular the problems associated with radionuclide transport through spatially random media such as fissured and porous rock. Three distinct modeling procedures are presented: (1) the classical advective dispersion equation and its interpretation as a stochastic differential equation, (2) a purely advective approach in which the groundwater velocity and the retardation factor are random functions, and (3) an analogy with neutron transport by regarding motion along fissures and subsequent branching as a pseudo-scattering process. We describe the mathematical methods needed to solve these stochastic problems and include perturbation theory, Novikov’s theorem and the marked Brownian particle. The relationship between the methods and the non-Fickian behavior that results are discussed and used to explain the scale-dependent experimental results for the dispersion coefficient. In general, the paper attempts to be instructive in that several results are presented which are not new, but also creative in that these results are presented in a new light. Two new models are also discussed and their advantages and shortcomings outlined.