ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
F. Malvagi, G. C. Pomraning, M. Sammartino
Nuclear Science and Engineering | Volume 112 | Number 3 | November 1992 | Pages 199-214
Technical Paper | doi.org/10.13182/NSE92-A29069
Articles are hosted by Taylor and Francis Online.
We consider the problem of neutral particle transport in a stochastic Markovian mixture consisting of an arbitrary number M of immiscible fluids. The Liouville master equation is used to obtain a model for the ensemble-averaged angular flux. This model consists of M coupled transport equations. If the absorption, internal source, and temporal and spatial gradients are assumed small, this transport description can be reduced to a diffusive description. Depending upon the scaling of the Markovian transition lengths, this diffusive limit consists of either a single diffusion equation or a set of M coupled diffusion equations. The asymptotic analysis is also used to derive appropriate initial and boundary conditions for each diffusion equation.