ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
R. Böttger, H. Klein, A. Chalupka, B. Strohmaier
Nuclear Science and Engineering | Volume 106 | Number 3 | November 1990 | Pages 377-398
Technical Paper | doi.org/10.13182/NSE90-A29065
Articles are hosted by Taylor and Francis Online.
A precision multidetector neutron time-of-flight (TOF) spectrometer and low-mass paral-lel-plate ionization chambers with a 252Cf deposit on the inner electrode are used to measure the spectral fluence of neutrons from the spontaneous fission of 252Cf in the 2- to 14-MeV energy range. Various methodological problems are carefully investigated. The influence of anisotropic efficiency in detecting the fission fragments is determined experimentally and numerically. Formulas are derived for an iterative analysis of the measured TOF spectra taking into account an inverted time scale and a nonextended dead time in the stop chain. On the basis of calculated neutron detection efficiencies, which were recently confirmed by n-p scattering experiments and proton recoil telescope measurements, it was possible to extract the spectral fluence of fission neutrons in absolute scale. The experimental data show significant deviations from a Maxwellian distribution with an energy parameter E0 = 1.42 MeV, but reasonable agreement can be achieved with cascade evaporation model calculations.