ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
R. Böttger, H. Klein, A. Chalupka, B. Strohmaier
Nuclear Science and Engineering | Volume 106 | Number 3 | November 1990 | Pages 377-398
Technical Paper | doi.org/10.13182/NSE90-A29065
Articles are hosted by Taylor and Francis Online.
A precision multidetector neutron time-of-flight (TOF) spectrometer and low-mass paral-lel-plate ionization chambers with a 252Cf deposit on the inner electrode are used to measure the spectral fluence of neutrons from the spontaneous fission of 252Cf in the 2- to 14-MeV energy range. Various methodological problems are carefully investigated. The influence of anisotropic efficiency in detecting the fission fragments is determined experimentally and numerically. Formulas are derived for an iterative analysis of the measured TOF spectra taking into account an inverted time scale and a nonextended dead time in the stop chain. On the basis of calculated neutron detection efficiencies, which were recently confirmed by n-p scattering experiments and proton recoil telescope measurements, it was possible to extract the spectral fluence of fission neutrons in absolute scale. The experimental data show significant deviations from a Maxwellian distribution with an energy parameter E0 = 1.42 MeV, but reasonable agreement can be achieved with cascade evaporation model calculations.