ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Georg Henneges
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 314-323
Technical Paper | doi.org/10.13182/NSE88-A29045
Articles are hosted by Taylor and Francis Online.
The reactivity effects of material rearrangements, simulating conditions in a postulated liquid-metal fast breeder reactor accident, were measured in three different critical assemblies. SNEAK-12A, a single-zone core, fueled with enriched uranium metal plates; SNEAK-12B, which had a central test zone fueled with Pu0202 rod bundles surrounded by a buffer and a driver zone; and SNEAK-12C, which had nearly the same integral compositions as SNEAK-12B but was loaded totally with plates. The reactivity effects were calculated using current Kernforschungszentrum Karlsruhe methods and data and, in part, also using the corresponding modules of the SIMMER-11 accident analysis system. Also, for some configurations, a comparison of measured and calculated fission rate distributions was performed., The evaluation yielded similar results for the three assemblies. For most cases investigated, satisfactory agreement between theory and experiment was reached when two-dimensional transport eigenvalue calculations or exact transport perturbation methods were used. As long as larger deviations occurred, transport results generally were on the conservative side. First-order transport perturbation theory only worked well in a limited number of cases. Diffusion calculations often led to large discrepancies, particularly when the experiments involved fuel dilution.