ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Georg Henneges
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 314-323
Technical Paper | doi.org/10.13182/NSE88-A29045
Articles are hosted by Taylor and Francis Online.
The reactivity effects of material rearrangements, simulating conditions in a postulated liquid-metal fast breeder reactor accident, were measured in three different critical assemblies. SNEAK-12A, a single-zone core, fueled with enriched uranium metal plates; SNEAK-12B, which had a central test zone fueled with Pu0202 rod bundles surrounded by a buffer and a driver zone; and SNEAK-12C, which had nearly the same integral compositions as SNEAK-12B but was loaded totally with plates. The reactivity effects were calculated using current Kernforschungszentrum Karlsruhe methods and data and, in part, also using the corresponding modules of the SIMMER-11 accident analysis system. Also, for some configurations, a comparison of measured and calculated fission rate distributions was performed., The evaluation yielded similar results for the three assemblies. For most cases investigated, satisfactory agreement between theory and experiment was reached when two-dimensional transport eigenvalue calculations or exact transport perturbation methods were used. As long as larger deviations occurred, transport results generally were on the conservative side. First-order transport perturbation theory only worked well in a limited number of cases. Diffusion calculations often led to large discrepancies, particularly when the experiments involved fuel dilution.