ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Zhao Chunlei, Xie Zhongsheng, Yin Banghua
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 260-268
Technical Paper | doi.org/10.13182/NSE88-A29039
Articles are hosted by Taylor and Francis Online.
The application of the transmission probability method to the calculation of neutron flux distribution in a two-dimensional light water reactor assembly is described. The interior flux within a mesh is assumed to be linearly dependent on X and Y coordinates. At the mesh surfaces the linear space distribution and the P1 approximation for the anisotropic angular distribution are considered. Simple expressions for the expansion coefficients are derived. These expressions are determined by outgoing and incoming currents and are renewed after each iteration. Based on the proposed method, the two-dimensional code TPM2D has been encoded and a series of two-dimensional assembly benchmark problems have been tested. The numerical results are in good agreement with those of Sn, surface flux transport, discrete node transport, and collision probability methods.