ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Zhao Chunlei, Xie Zhongsheng, Yin Banghua
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 260-268
Technical Paper | doi.org/10.13182/NSE88-A29039
Articles are hosted by Taylor and Francis Online.
The application of the transmission probability method to the calculation of neutron flux distribution in a two-dimensional light water reactor assembly is described. The interior flux within a mesh is assumed to be linearly dependent on X and Y coordinates. At the mesh surfaces the linear space distribution and the P1 approximation for the anisotropic angular distribution are considered. Simple expressions for the expansion coefficients are derived. These expressions are determined by outgoing and incoming currents and are renewed after each iteration. Based on the proposed method, the two-dimensional code TPM2D has been encoded and a series of two-dimensional assembly benchmark problems have been tested. The numerical results are in good agreement with those of Sn, surface flux transport, discrete node transport, and collision probability methods.